Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca2+

نویسندگان

  • Christopher Shelley
  • Xiaowei Niu
  • Yanyan Geng
  • Karl L. Magleby
چکیده

Voltage-dependent gating mechanisms of large conductance Ca(2+) and voltage-activated (BK) channels were investigated using two-dimensional maximum likelihood analysis of single-channel open and closed intervals. To obtain sufficient data at negative as well as positive voltages, single-channel currents were recorded at saturating Ca(2+) from BK channels mutated to remove the RCK1 Ca(2+) and Mg(2+) sensors. The saturating Ca(2+) acting on the Ca(2+) bowl sensors of the resulting BK(B) channels increased channel activity while driving the gating into a reduced number of states, simplifying the model. Five highly constrained idealized gating mechanisms based on extensions of the Monod-Wyman-Changeux model for allosteric proteins were examined. A 10-state model without coupling between the voltage sensors and the opening/closing transitions partially described the voltage dependence of Po but not the single-channel kinetics. With allowed coupling, the model gave improved descriptions of Po and approximated the single-channel kinetics; each activated voltage sensor increased the opening rate approximately an additional 23-fold while having little effect on the closing rate. Allowing cooperativity among voltage sensors further improved the description of the data: each activated voltage sensor increased the activation rate of the remaining voltage sensors approximately fourfold, with little effect on the deactivation rate. The coupling factor was decreased in models with cooperativity from approximately 23 to approximately 18. Whether the apparent cooperativity among voltage sensors arises from imposing highly idealized models or from actual cooperativity will require additional studies to resolve. For both cooperative and noncooperative models, allowing transitions to five additional brief (flicker) closed states further improved the description of the data. These observations show that the voltage-dependent single-channel kinetics of BK(B) channels can be approximated by highly idealized allosteric models in which voltage sensor movement increases Po mainly through an increase in channel opening rates, with limited effects on closing rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels

Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+ The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with...

متن کامل

Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca

Large conductance Ca-activated K (BK) channels are activated by membrane depolarization and intracellular Ca and Mg (Latorre and Brauchi, 2006; Lu et al., 2006; Salkoff et al., 2006; Cui et al., 2009; for review see Magleby, 2003). Once activated, the K efflux through the opened channel drives the membrane potential in the negative direction. Through this mechanism, BK channels sense both depol...

متن کامل

Heme Regulates Allosteric Activation of the Slo1 BK Channel

Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531-535). Here we investigated the ...

متن کامل

The NH2 Terminus of RCK1 Domain Regulates Ca2+-dependent BKCa Channel Gating

Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of...

متن کامل

Alcohol modulation of BK channel gating depends on β subunit composition

In most mammalian tissues, Ca2+i/voltage-gated, large conductance K+ (BK) channels consist of channel-forming slo1 and auxiliary (β1-β4) subunits. When Ca2+i (3-20 µM) reaches the vicinity of BK channels and increases their activity at physiological voltages, β1- and β4-containing BK channels are, respectively, inhibited and potentiated by intoxicating levels of ethanol (50 mM). Previous studie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2010